An improved algorithm for simulating three-dimensional, viscoelastic turbulence
نویسندگان
چکیده
We present a new finite-difference formulation to update the conformation tensor in dumbbell models (e.g., Oldroyd-B, FENE-P, Giesekus) that guarantees positive eigenvalues of the tensor (i.e., the tensor remains positive definite) and prevents over-extension for finite-extensible models. The formulation is a generalization of the second-order, central difference scheme developed by Kurganov and Tadmor [A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, J. Comput. Phys. 160 (2000) 241– 282] that guarantees a scalar field remains everywhere positive. We have extended the algorithm to guarantee a tensor field remains everywhere positive definite following an update. Extensive testing of the algorithm shows that the volume average of the conformation tensor is conserved. Furthermore, volume averages of the conformation tensor in homogeneous turbulent shear flow made over the Eulerian grid are in quantitative agreement with Lagrangian averages made over fluid particles moving throughout the domain, highlighting the accuracy of the treatment of the convective terms. © 2006 Elsevier B.V. All rights reserved. PACS: 47.11.Df; 47.27.E−; 47.50.−d; 47.85.1b
منابع مشابه
Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow
One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملDeveloping numerical algorithm and a new program for simulating alkali aggregate reaction in mass concrete
Nowadays, Alkali Aggregate Reaction is considered as one of the most dangerous weak points of concrete and its occurrence has been widely reported in various structures. In the current study, a program is developed for predicting and examining the effects of mentioned reaction on the three-dimensional analysis of concrete structures such as arch dams. In this regard, a program provided for dam ...
متن کاملتوسعه یک روش عددی حجم محدود برای ارزیابی عملکرد هیدرودینامیکی سازه های دریایی
Development of a compatible computational fluid dynamics procedure to investigate rigid and fixed/free coastal and offshore structures hydrodynamics in a time-dependent one/two phase flow of viscous incompressible fluids is presented. Differential governing equations are discretised using finite volume approach based on a colocated arrangement. The conservation equations for mass and momentum a...
متن کامل